Physics 523, General Relativity
 Homework 5

Due Friday, $17^{\text {th }}$ November 2006

Jacob Lewis Bourjaily

Problem 1

Let us consider a manifold with a torsion free connection $R(X, Y)$ which is not necessarily metric compatible. We are to prove that

$$
\begin{equation*}
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0 \tag{1.1}
\end{equation*}
$$

and the Bianchi identity

$$
\begin{equation*}
\nabla_{X}(R(X, Y)) V+\nabla_{Y}(R(Z, X)) V+\nabla_{Z}(R(X, Y)) V=0 \tag{1.2}
\end{equation*}
$$

The first identity is relatively simple to prove - it follows naturally from the Jacobi identity for the Lie derivative. Let us first prove the Jacobi identity:

$$
\begin{equation*}
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \tag{1.3}
\end{equation*}
$$

Using the antisymmetry of the Lie bracket and our result from last homework problem 3, we have

$$
[X,[Y, Z]]=£_{X}[Y, Z]=-£_{[Y, Z]} X=£_{Z} £_{Y} X-£_{Y} £_{Z} X=-[Z,[X, Y]]-[Y,[Z, X]] .
$$

$\grave{O} \pi \epsilon \rho \not{\epsilon} \delta \epsilon \epsilon \iota \delta \epsilon \bar{\iota} \xi \alpha \iota$
The condition of a connection being torsion free is that

$$
\begin{equation*}
£_{X} Y=\nabla_{X} Y-\nabla_{Y} X \tag{1.4}
\end{equation*}
$$

Expanding the Lie brackets encountered in the statement of the Jacobi identity,

$$
\begin{align*}
& 0=£_{X} £_{Y} Z+£_{Y} £_{Z} X+£_{Z} £_{X} Y, \\
& =£_{X}\left(\nabla_{Y} Z-\nabla_{Z} Y\right)+£_{Y}\left(\nabla_{Y} X-\nabla_{X} Y\right)+£_{Z}\left(\nabla_{X} Y-\nabla_{Y} X\right), \\
& =\nabla_{X} \nabla_{Y} Z-\nabla_{X} \nabla_{Z} Y-\nabla_{[Y, Z]} X+\nabla_{Y} \nabla_{Z} X-\nabla_{Y} \nabla_{X} Z-\nabla_{[Z, X]} Y+\nabla_{Z} \nabla_{X} Y-\nabla_{Z} \nabla_{Y} X-\nabla_{[X, Y]} Z, \\
& \\
& =\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) Z+\left(\nabla_{Y} \nabla_{Z}-\nabla_{Z} \nabla_{Y}-\nabla_{[Y, Z]}\right) X+\left(\nabla_{Z} \nabla_{X}-\nabla_{X} \nabla_{Z}-\nabla_{[Z, X]}\right) Y ; \tag{1.5}\\
& \quad \therefore R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0 .
\end{align*}
$$

$\grave{o} \pi \epsilon \rho \bar{\epsilon} \delta \epsilon \epsilon \iota \delta \epsilon \overparen{\iota} \xi \alpha \iota$
To prove the Bianchi identity, we will 'dirty' our expressions with explicit indices in hope of a quick solution. It is rather obvious to see that (1.2) is equivalent to the component expression

$$
\begin{equation*}
R_{b c d ; e}^{a}+R_{b d e ; c}^{a}+R_{b e c ; d}^{a}=0 . \tag{1.6}
\end{equation*}
$$

Worse than introducing components, let us use our (gauge) freedom to consider the Bianchi identity evaluated at a point p in spacetime in Riemann normal coordinates ${ }^{1}$. If we show that the Bianchi identity (1.6) holds in any particular coordinates at a point p, it necessarily must hold in any other coordinate system - and if p is arbitrary, then it follows that the Bianchi identity holds throughout spacetime.
Recall from lecture or elsewhere that Riemann normal coordinates at p are such that $\Gamma_{b c}^{a}(p)=0$. This implies that the covariant derivative of the Riemann tensor is simply a normal derivative at p. Using the definition of $R_{b c d}^{a}$ in terms of the Christoffel symbols, we see at once that

$$
\begin{gather*}
R_{b c d ; e}^{a}(p)+R_{b d e ; c}^{a}(p)+R_{b e c ; d}^{a}(p)=\Gamma_{b d, c e}^{a}(p)-\Gamma_{b c, d e}^{a}(p)+\Gamma_{b e, d c}^{a}(p)-\Gamma_{b d, e c}^{a}(p)+\Gamma_{b c, e d}^{a}(p)-\Gamma_{b e, c d}^{a}(p) ; \\
\therefore R_{b c d ; e}^{a}(p)+R_{b d e ; c}^{a}(p)+R_{b e c ; d}^{a}(p)=0 . \tag{1.7}
\end{gather*}
$$

ó $\pi \epsilon \rho$ '้ $\delta \epsilon \iota \delta \epsilon \grave{\iota} \xi \alpha \iota$

[^0]
Problem 2

We are to compute the Riemann tensor, the Ricci tensor, the Weyl tensor and the scalar curvature of a conformally-flat metric,

$$
\begin{equation*}
g_{a b}(x)=e^{2 \Omega(x)} \eta_{a b} \tag{2.1}
\end{equation*}
$$

Using the definition of the Christoffel symbol with our metric above, we find

$$
\begin{align*}
\Gamma_{b c}^{a}= & \frac{1}{2} g^{a m}\left\{g_{a m, b}+g_{b m, a}-g_{a b, m}\right\}, \\
= & \frac{1}{2} e^{-2 \Omega} \eta^{a m}\left\{\eta_{b m} e^{2 \Omega} \partial_{c} \Omega+\eta_{c m} e^{2 \Omega} \partial_{b} \Omega-e^{2 \Omega} \eta_{b c} \partial_{m} \Omega\right\}, \\
& \therefore \Gamma_{b c}^{a}=\delta_{b}^{a} \partial_{c} \Omega+\delta_{c}^{a} \partial_{b} \Omega-\eta_{b c} \eta^{a m} \partial_{m} \Omega . \tag{2.2}
\end{align*}
$$

Using this together with the (definition of the) Riemann tensor's components

$$
\begin{equation*}
R_{b c d}^{a}=\Gamma_{b d, c}^{a}-\Gamma_{b c, d}^{a}+\Gamma_{b d}^{m} \Gamma_{c m}^{a}-\Gamma_{b c}^{m} \Gamma_{d m}^{a}, \tag{2.3}
\end{equation*}
$$

we may compute directly ${ }^{2}$,

$$
\begin{aligned}
R_{b c d}^{a}= & \delta_{d}^{a} \partial_{c} \partial_{b} \Omega-\eta_{b d} \eta^{a m} \partial_{c} \partial_{m} \Omega-\delta_{c}^{a} \partial_{b} \partial_{d} \Omega+\eta_{b c} \eta^{a m} \partial_{d} \partial_{m} \Omega-\delta_{d}^{a}\left(\partial_{b} \Omega\right)\left(\partial_{c} \Omega\right)+\eta_{b d} \eta^{a m}\left(\partial_{c} \Omega\right)\left(\partial_{m} \Omega\right) \\
& -\delta_{d}^{a}\left(\partial_{c} \Omega\right)\left(\partial_{b} \Omega\right)-\delta_{c}^{a}\left(\partial_{b} \Omega\right)\left(\partial_{b} \Omega\right)+\eta_{b c} \delta_{d}^{a} \eta^{m n}\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right)+\delta_{c}^{a}\left(\partial_{b} \Omega\right)\left(\partial_{d} \Omega\right)-\eta_{b c} \eta^{a m}\left(\partial_{d} \Omega\right)\left(\partial_{m} \Omega\right) \\
& +\delta_{c}^{a}\left(\partial_{d} \Omega\right)\left(\partial_{b} \Omega\right)+\delta_{d}^{a}\left(\partial_{b} \Omega\right)\left(\partial_{c} \Omega\right)-\eta_{b d} d_{c}^{a} \eta^{m n}\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right)-\eta_{b d} \eta^{a m}\left(\partial_{c} \Omega\right)\left(\partial_{m} \Omega\right)+\eta_{b d} \eta^{a m}\left(\partial_{c} \Omega\right)\left(\partial_{m} \Omega\right) \\
= & \left\{\delta_{b}^{m}\left(\delta_{c}^{a} \delta_{d}^{n}-\delta_{d}^{a} \delta_{c}^{n}\right)+\eta_{b d}\left(\eta^{a n} \delta_{c}^{m}-\eta^{m n} \delta_{c}^{a}\right)+\eta_{b c}\left(\eta^{m n} \delta_{d}^{a}-\eta^{a n} \delta_{d}^{m}\right)\right\}\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right) \\
& +\left(\delta_{d}^{a} \partial_{c}-\delta_{c}^{a} \partial_{d}\right) \partial_{b} \Omega+\eta^{a m}\left(\eta_{b c} \partial_{d} \partial_{m} \Omega-\eta_{b d} \partial_{c} \partial_{m} \Omega\right) .
\end{aligned}
$$

$\grave{o} \pi \epsilon \rho \stackrel{\epsilon}{\epsilon} \delta \epsilon \iota \pi \sigma \iota \eta \sigma \alpha \iota$
It will be helpful to recast this into the form where all the indices are lowered. We can do this by acting with the metric tensor. Doing so we find,

$$
\begin{align*}
e^{-2 \Omega} R_{a b c d}= & \left\{\delta_{b}^{m}\left(\eta_{a c} \delta_{d}^{n}-\eta_{a d} \delta_{c}^{n}\right)+\eta_{b d}\left(\delta_{a}^{n} \delta_{c}^{m}-\eta_{a c} \eta^{m n}\right)+\eta_{b c}\left(\eta_{a d} \eta^{m n}-\delta_{a}^{m} \delta_{d}^{n}\right)\right\}\left(\delta_{m} \Omega\right)\left(\delta_{n} \Omega\right) \\
& +\eta_{a d} \partial_{c} \partial_{b} \Omega-\eta_{a c} \partial_{d} \partial_{b} \Omega+\eta_{b c} \partial_{d} \partial_{a} \Omega-\eta_{b d} \partial_{c} \partial_{a} \Omega \\
= & \left\{\eta_{a d} \delta_{b}^{m} \delta_{c}^{n}-\eta_{a c} \delta_{b}^{m} \delta_{d}^{n}+\eta_{b c} \delta_{a}^{m} \delta_{d}^{n}-\eta_{b d} \delta_{a}^{m} \delta_{c}^{n}\right\}\left(\partial_{m} \partial_{n} \Omega-\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right)\right)+\left(\eta_{a d} \eta_{b c}-\eta_{a c} \eta_{b d}\right) \eta^{m n}\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right) \tag{2.4}
\end{align*}
$$

Although we will not have any use for such frivolities, we can further compress this expression to

$$
\begin{equation*}
e^{-2 \Omega} R_{a b c d}=4 \delta_{[a}^{r} \delta_{b]}^{n} \delta_{[d}^{s} \delta_{c]}^{m} \eta_{r s}\left(\partial_{m} \partial_{n} \Omega-\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right)\right)+\left(\eta_{a d} \eta_{b c}-\eta_{a c} \eta_{b d}\right) \eta^{m n}\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right) \tag{2.5}
\end{equation*}
$$

Now, we can then find the Ricci tensor by acting on equation (2.4) with $g^{a c}$. Letting D be the dimensionality of our manifold, we find

$$
\begin{align*}
R_{b d} & =\left\{\delta_{d}^{m} \delta_{b}^{n}-D \delta_{d}^{m} \delta_{b}^{n}+\delta_{d}^{m} \delta_{b}^{n}-\eta_{b d} \eta^{m n}\right\}\left(\partial_{m} \partial_{n} \Omega-\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right)\right)+\eta^{m n}\left(\eta_{b d}-D \eta_{b d}\right)\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right) \\
& =(2-D)\left(\partial_{b} \partial_{d} \Omega-\left(\partial_{b} \Omega\right)\left(\partial_{d} \Omega\right)\right)+(2-D) \eta_{b d} \eta^{m n}\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right)-\eta_{b d} \eta^{m n} \partial_{m} \partial_{n} \Omega \tag{2.6}
\end{align*}
$$

о' $\pi \epsilon \rho$ '้ $\delta \epsilon \iota \pi о \iota \eta \bar{\eta} \sigma \iota$
Lastly, contracting this, we find the scalar curvature,

$$
\begin{align*}
e^{2 \Omega} R & =(2-D) \eta^{m n}\left(\partial_{m} \partial_{n} \Omega-\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right)\right)+D(2-D) \eta^{m n}\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right)-D \eta^{m n} \partial_{m} \partial_{n} \Omega, \\
& =2(1-D) \eta^{m n} \partial_{m} \partial_{n} \Omega-(2-D)(1-D) \eta^{m n}\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right) \tag{2.7}
\end{align*}
$$

[^1]All that remains for us to compute is the Weyl tensor. Any exposure to conformal geometry immediately tells us that the Weyl tensor vanishes. That is, that

$$
\begin{equation*}
R_{a b c d}=\frac{1}{(D-2)}\left(g_{a c} R_{d b}+g_{d b} R_{a c}-g_{a d} R_{b c}-g_{b c} R_{a d}\right)-\frac{1}{(D-1)(D-2)} R\left(g_{a c} g_{d b}-g_{a d} g_{b c}\right) . \tag{2.8}
\end{equation*}
$$

We will try as hard as possible to avoid actually computing the right hand side by expanding our expressions above. To show that the Weyl tensor vanishes, we must build $R_{a b c d}$ out of $R_{b c}, R$ and the metric $g_{a b}$. This statement alone essentially gives us the expression at first glance.
The first important thing to notice is that $R_{a b c d}$ has no term proportional to $\eta^{m n} \partial_{m} \partial_{n} \Omega$ while both $R_{a b}$ and R do. This means that if $R_{a b c d}$ can only be composed of linear combinations of $R_{a b}$ and R which do not contain $\eta^{m n} \partial_{m} \partial_{n} \Omega$. Looking at expressions (2.4) and (2.6), we see that they can only appear in the combination

$$
\begin{equation*}
R_{b d}+\frac{e^{2 \Omega} \eta_{b d}}{2(1-D)} R=R_{b d}+\frac{g_{b d}}{2(1-D)} R . \tag{2.9}
\end{equation*}
$$

Any multiple of this combination will automatically have no $\eta^{m n} \partial_{m} \partial_{n} \Omega$ contribution. Staring a bit more at equations (2.4) and (2.6), we notice that the first set of terms in (2.4) are all of the form $g_{a c} R_{b d}$. Indeed, we see that
$\frac{1}{2-D}\left\{\eta_{a d} R_{b c}-\eta_{a c} R_{b d}+\eta_{b c} R_{a d}-\eta_{b d} R_{a c}\right\}=\left\{\eta_{a d} \delta_{b}^{m} \delta_{c}^{n}-\eta_{a c} \delta_{b}^{m} \delta_{d}^{n}+\eta_{b c} \delta_{a}^{m} \delta_{d}^{n}-\eta_{b d} \delta_{a}^{m} \delta_{c}^{n}\right\}\left(\partial_{m} \partial_{n} \Omega-\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right)\right)+\ldots$.
Notice that multiplying both sides of the above equation by $e^{2 \Omega}$ will convert all of the $\eta_{a b}$'s into $g_{a b}$'s ${ }^{3}$. This is all we need to construct the Riemann tensor from the Ricci tensor and scalar curvature: knowing the combination of Ricci tensors which gives part of the Riemann tensor, we can use (2.9) to determine the rest. Indeed, we see that

$$
\begin{align*}
C_{a b c d}+R_{a b c d}= & \frac{1}{2-D}\left\{g_{a b} R_{b c}-g_{a d} R_{b d}+g_{b c} R_{a d}-g_{b d} R_{a c}\right\}+\frac{R}{2(1-D)(2-D)}\left(g_{a d} g_{b c}-g_{a c} g_{b d}+g_{b c} g_{a d}-g_{b d} g_{a c}\right), \\
& =\frac{1}{D-2}\left\{g_{a c} R_{b d}-g_{a d} R_{b c}-g_{b c} R_{a d}+g_{b d} R_{a c}\right\}-\frac{R}{(D-1)(D-2)}\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right), \\
= & \left\{g_{a d} \delta_{b}^{m} \delta_{c}^{n}-g_{a c} \delta_{b}^{m} \delta_{d}^{n}+g_{b c} \delta_{a}^{m} \delta_{d}^{n}-g_{b d} \delta_{a}^{m} \delta_{c}^{n}\right\}\left(\partial_{m} \partial_{n} \Omega-\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right)\right)+\left(g_{a d} g_{b c}-g_{a c} g_{b d}\right) g^{m n}\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right), \\
= & R_{a b c d} ; \\
& \therefore C_{a b c d}=0 . \tag{2.11}
\end{align*}
$$

ó $\pi \epsilon \rho$ '̆ $\delta \epsilon \iota \pi о \iota \bar{\eta} \sigma \alpha \iota$

[^2]
Problem 3

We are to show that if $\varphi(x)$ satisfies the flat-space, massless Klein-Gordon equation, then if $g_{a b}=$ $e^{2 \Omega(x)} \eta_{a b}$, the transformed field $e^{\beta \Omega(x)} \varphi(x) \equiv \varphi^{\prime}(x)$ satisfies the equation

$$
\begin{equation*}
g^{a b} \varphi_{; a b}^{\prime}-\alpha R \varphi^{\prime}=0 \tag{3.1}
\end{equation*}
$$

for appropriate values of α and β-dependant on the spacetime dimension but independent of $\Omega(x)$.
Let us agree to call $\square \equiv \eta^{a b} \partial_{a} \partial_{b}$. Then the flat-space Klein-Gordon equation is simply $\square \varphi(x)=0$. Recall the expression for the scalar curvature R in D spacetime dimensions for a metric which is conformally-related to the Minkowski metric (2.7):

$$
\begin{equation*}
R=2(1-D) e^{-2 \Omega} \square \Omega-(2-D)(1-D) e^{-2 \Omega} \eta^{m n}\left(\partial_{m} \Omega\right)\left(\partial_{n} \Omega\right) \tag{3.2}
\end{equation*}
$$

We would like to explicitly state $g^{a b} \nabla_{b} \nabla_{a}$ in terms of \square and Ω. This can be done quite explicitly, recalling the Christoffel symbols for a conformally-flat spacetime(2.2),

$$
\begin{aligned}
g^{a b} \nabla_{b} \nabla_{a} & =g^{a b} \partial_{a} \partial_{b}-g^{a b} \Gamma_{a b}^{c} \partial_{c}, \\
& =e^{-2 \Omega}\left\{\square-\eta^{a b}\left(\delta_{a}^{c}\left(\partial_{b} \Omega\right) \partial_{c}+\delta_{b}^{c}\left(\partial_{a} \Omega\right) \partial_{c}-\eta_{a b} \eta^{c m}\left(\partial_{m} \Omega\right) \partial_{c}\right)\right\}, \\
& =e^{-2 \Omega}\left\{\square-\eta^{c b}\left(\partial_{b} n \Omega\right) \partial_{c}-\eta^{a c}\left(\partial_{a} \Omega\right) \partial_{c}+D \eta^{c m}\left(\partial_{m} \Omega\right) \partial_{c}\right\}, \\
& =e^{-2 \Omega}\left\{\square-(D-2) \eta^{a b}\left(\partial_{a} \Omega\right) \partial_{b}\right\} .
\end{aligned}
$$

Acting with $g^{a b} \nabla_{b} \nabla_{a}$ on φ^{\prime} we find,

$$
\begin{aligned}
g^{a b} \nabla_{b} \nabla_{a} \varphi^{\prime} & =e^{-2 \Omega}\left\{\square\left(e^{\beta \Omega} \varphi\right)+(D-2) \eta^{a b}\left(\partial_{a} \Omega\right)\left(\partial_{b}\left(e^{\beta \Omega} \varphi\right)\right)\right\} \\
& =e^{-2 \Omega}\left\{\beta \varphi^{\prime} \square(\Omega)+\beta(\beta+D-2) \varphi^{\prime} \eta^{a b}\left(\partial_{a} \Omega\right)\left(\partial_{b} \Omega\right)+2 \beta e^{\beta \Omega} \eta^{a b}\left(\partial_{a} \varphi\right)\left(\partial_{b} \Omega\right)+(D-2) e^{\beta \Omega} \eta^{a b}\left(\partial_{a} \varphi\right)\left(\partial_{b} \Omega\right)\right\}
\end{aligned}
$$

Although only one equation, if (3.1) is to hold for arbitrary $\Omega(x)$, there are actually three constraints implied by (3.1) -one for each functionally distinct contribution. Actually, we'll find that there are only two independent conditions-just enough to uniquely determine α and β.
First, notice that R does not contain any derivatives of $\varphi(x)$. Therefore equation (3.1) implies that

$$
\begin{equation*}
2 \beta e^{\beta \Omega} \eta^{a b}\left(\partial_{a} \varphi\right)\left(\partial_{b} \Omega\right)+(D-2) e^{\beta \Omega} \eta^{a b}\left(\partial_{a} \varphi\right)\left(\partial_{b} \Omega\right)=0 \tag{3.3}
\end{equation*}
$$

arising from the $g^{a b} \nabla_{b} \nabla_{a} \varphi^{\prime}$ term in (3.1). This obviously implies that

$$
\begin{equation*}
\therefore \beta=-\frac{D-2}{2} \text {. } \tag{3.4}
\end{equation*}
$$

The next condition(s) come form matching the remaining two functionally distinct terms in (3.1), namely ${ }^{4}$
$g^{a b} \nabla_{b} \nabla_{a} \varphi^{\prime}-\alpha R \varphi^{\prime} \propto \beta \square \Omega+\beta(\beta+D-2) \eta^{a b}\left(\partial_{a} \Omega\right)\left(\partial_{b} \Omega\right)-2 \alpha(1-D) \square \Omega+\alpha(D-2)(D-1) \eta^{a b}\left(\partial_{a} \Omega\right)\left(\partial_{b} \Omega\right)$.
Matching the corresponding terms, we see that

$$
\alpha=\frac{\beta}{2(1-D)} \quad \text { and } \quad \alpha=\frac{-\beta(\beta+D-2)}{(D-2)(D-1)}
$$

We see that $\beta=\frac{1}{2}(D-2)$ is consistent with both of these - more concretely, any two of these three constraints is sufficient to imply the third. Therefore, we have shown that $\varphi^{\prime}=e^{\beta \Omega} \varphi$ will satisfy the modified Klein-Gordon equation (3.1) for any $\Omega(x)$ if

$$
\begin{equation*}
\therefore \beta=\frac{2-D}{2} \quad \text { and } \quad \alpha=\frac{1}{4} \frac{D-2}{D-1} . \tag{3.7}
\end{equation*}
$$

[^3]
[^0]: ${ }^{1}$ Riemann normal coordinates are constructed geometrically as follows: in a sufficiently small neighbourhood about p, every point can be reached by traversing a certain geodesic through p a certain distance. If we choose to define all families of geodesics through p using the same affine parameter λ then if we fix λ, there is a (smooth) bijection between tangent vectors in $T_{p} M$ to points in the neighbourhood about p : the direction of $v \in T_{p} M$ tells the direction to the nearby points and its magnitude (for fixed λ) tells the distance to travel along the geodesic. Needless to say this construction does not require a metric.

[^1]: ${ }^{2}$ To be absolutely precise, there are two terms which manifestly cancel that appear when expanding this expression, which we have left out for typographical and aesthetic considerations.

[^2]: ${ }^{3}$ The conversion from $\eta_{a b} \rightarrow g_{a b}$ is completely natural. The only possibly non-trivial step comes from the last term in the expression (2.4) for the Riemann tensor: bringing $e^{2 \Omega}$ to the right hand side of (2.4), we have a term which has two lowered $\eta_{a b}$'s and one upper $\eta_{a b}$; now, $e^{2 \Omega} \eta^{m n}=e^{4 \Omega} g^{m n}$ and how these two factors of $e^{2 \Omega}$ can be absorbed into the lowered η 's as desired.

[^3]: ${ }^{4}$ We are not including those pieces eliminated by the choice (3.4).

