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Problem 1
Let us consider a manifold with a torsion free connection R(X, Y ) which is not necessarily metric

compatible. We are to prove that

R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0, (1.1)

and the Bianchi identity

∇X

(
R(X,Y )

)
V +∇Y

(
R(Z,X)

)
V +∇Z

(
R(X,Y )

)
V = 0. (1.2)

The first identity is relatively simple to prove—it follows naturally from the Jacobi
identity for the Lie derivative. Let us first prove the Jacobi identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0. (1.3)

Using the antisymmetry of the Lie bracket and our result from last homework problem
3, we have

[X, [Y,Z]] = £X[Y, Z] = −£[Y,Z]X = £Z£YX −£Y£ZX = −[Z, [X, Y ]]− [Y, [Z,X]].
‘óπερ ’έδει δε�ιξαι

The condition of a connection being torsion free is that

£XY = ∇XY −∇Y X. (1.4)

Expanding the Lie brackets encountered in the statement of the Jacobi identity,

0 =£X£YZ + £Y£ZX + £Z£XY,

=£X(∇Y Z −∇ZY ) + £Y (∇Y X −∇XY ) + £Z(∇XY −∇Y X) ,

=∇X∇Y Z −∇X∇ZY −∇[Y,Z]X +∇Y∇ZX −∇Y∇XZ −∇[Z,X]Y +∇Z∇XY −∇Z∇Y X −∇[X,Y ]Z,

=
(∇X∇Y −∇Y∇X −∇[X,Y ]

)
Z +

(∇Y∇Z −∇Z∇Y −∇[Y,Z]

)
X +

(∇Z∇X −∇X∇Z −∇[Z,X]

)
Y ;

∴ R(X,Y )Z + R(Y, Z)X + R(Z, X)Y = 0. (1.5)
‘óπερ ’έδει δε�ιξαι

To prove the Bianchi identity, we will ‘dirty’ our expressions with explicit indices in
hope of a quick solution. It is rather obvious to see that (1.2) is equivalent to the
component expression

Ra
bcd;e + Ra

bde;c + Ra
bec;d = 0. (1.6)

Worse than introducing components, let us use our (gauge) freedom to consider the
Bianchi identity evaluated at a point p in spacetime in Riemann normal coordinates1.
If we show that the Bianchi identity (1.6) holds in any particular coordinates at a
point p, it necessarily must hold in any other coordinate system—and if p is arbitrary,
then it follows that the Bianchi identity holds throughout spacetime.

Recall from lecture or elsewhere that Riemann normal coordinates at p are such that
Γa

bc(p) = 0. This implies that the covariant derivative of the Riemann tensor is simply
a normal derivative at p. Using the definition of Ra

bcd in terms of the Christoffel
symbols, we see at once that

Ra
bcd;e(p) + Ra

bde;c(p) + Ra
bec;d(p) = Γa

bd,ce(p)− Γa
bc,de(p) + Γa

be,dc(p)− Γa
bd,ec(p) + Γa

bc,ed(p)− Γa
be,cd(p);

∴ Ra
bcd;e(p) + Ra

bde;c(p) + Ra
bec;d(p) = 0. (1.7)

‘óπερ ’έδει δε�ιξαι

1Riemann normal coordinates are constructed geometrically as follows: in a sufficiently small neighbourhood about p,
every point can be reached by traversing a certain geodesic through p a certain distance. If we choose to define all families
of geodesics through p using the same affine parameter λ then if we fix λ, there is a (smooth) bijection between tangent
vectors in TpM to points in the neighbourhood about p: the direction of v ∈ TpM tells the direction to the nearby points
and its magnitude (for fixed λ) tells the distance to travel along the geodesic. Needless to say this construction does not
require a metric.

1
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Problem 2
We are to compute the Riemann tensor, the Ricci tensor, the Weyl tensor and the scalar curvature

of a conformally-flat metric,
gab(x) = e2Ω(x)ηab. (2.1)

Using the definition of the Christoffel symbol with our metric above, we find

Γa
bc =

1
2
gam {gam,b + gbm,a − gab,m} ,

=
1
2
e−2Ωηam

{
ηbme2Ω∂cΩ + ηcme2Ω∂bΩ− e2Ωηbc∂mΩ

}
,

∴ Γa
bc = δa

b ∂cΩ + δa
c ∂bΩ− ηbcη

am∂mΩ. (2.2)
Using this together with the (definition of the) Riemann tensor’s components

Ra
bcd = Γa

bd,c − Γa
bc,d + Γm

bdΓ
a
cm − Γm

bcΓ
a
dm, (2.3)

we may compute directly2,

Ra
bcd = δa

d∂c∂bΩ− ηbdη
am∂c∂mΩ− δa

c ∂b∂dΩ + ηbcη
am∂d∂mΩ− δa

d (∂bΩ) (∂cΩ) + ηbdη
am(∂cΩ)(∂mΩ)

− δa
d(∂cΩ)(∂bΩ)− δa

c (∂bΩ)(∂bΩ) + ηbcδ
a
dηmn(∂mΩ)(∂nΩ) + δa

c (∂bΩ)(∂dΩ)− ηbcη
am(∂dΩ)(∂mΩ)

+ δa
c (∂dΩ)(∂bΩ) + δa

d(∂bΩ)(∂cΩ)− ηbdd
a
cηmn(∂mΩ)(∂nΩ)− ηbdη

am(∂cΩ)(∂mΩ) + ηbdη
am(∂cΩ)(∂mΩ)

=
{

δm
b (δa

c δn
d − δa

dδn
c ) + ηbd (ηanδm

c − ηmnδa
c ) + ηbc (ηmnδa

d − ηanδm
d )

}
(∂mΩ) (∂nΩ)

+ (δa
d∂c − δa

c ∂d) ∂bΩ + ηam (ηbc∂d∂mΩ− ηbd∂c∂mΩ) .

‘óπερ ’έδει πoι�ησαι

It will be helpful to recast this into the form where all the indices are lowered. We can
do this by acting with the metric tensor. Doing so we find,

e−2ΩRabcd =
{

δm
b (ηacδ

n
d − ηadδ

n
c ) + ηbd (δn

a δm
c − ηacη

mn) + ηbc (ηadη
mn − δm

a δn
d )

}
(δmΩ)(δnΩ)

+ ηad∂c∂bΩ− ηac∂d∂bΩ + ηbc∂d∂aΩ− ηbd∂c∂aΩ,

=
{

ηadδ
m
b δn

c − ηacδ
m
b δn

d + ηbcδ
m
a δn

d − ηbdδ
m
a δn

c

}(
∂m∂nΩ− (∂mΩ)(∂nΩ)

)
+

(
ηadηbc − ηacηbd

)
ηmn(∂mΩ)(∂nΩ).

(2.4)

Although we will not have any use for such frivolities, we can further compress this
expression to

e−2ΩRabcd = 4δr
[a δn

b]δ
s
[d δm

c]ηrs

(
∂m∂nΩ− (∂mΩ)(∂nΩ)

)
+

(
ηadηbc − ηacηbd

)
ηmn(∂mΩ)(∂nΩ). (2.5)

Now, we can then find the Ricci tensor by acting on equation (2.4) with gac. Letting D
be the dimensionality of our manifold, we find

Rbd =
{

δm
d δn

b −Dδm
d δn

b + δm
d δn

b − ηbdη
mn

}(
∂m∂nΩ− (∂mΩ)(∂nΩ)

)
+ ηmn

(
ηbd −Dηbd

)
(∂mΩ)(∂nΩ),

=(2−D)
(
∂b∂dΩ− (∂bΩ)(∂dΩ)

)
+ (2−D)ηbdη

mn(∂mΩ)(∂nΩ)− ηbdη
mn∂m∂nΩ. (2.6)

‘óπερ ’έδει πoι�ησαι

Lastly, contracting this, we find the scalar curvature,

e2ΩR =(2−D)ηmn
(
∂m∂nΩ− (∂mΩ)(∂nΩ)

)
+ D(2−D)ηmn(∂mΩ)(∂nΩ)−Dηmn∂m∂nΩ,

=2(1−D)ηmn∂m∂nΩ− (2−D)(1−D)ηmn(∂mΩ)(∂nΩ). (2.7)
‘óπερ ’έδει πoι�ησαι

2To be absolutely precise, there are two terms which manifestly cancel that appear when expanding this expression,
which we have left out for typographical and aesthetic considerations.
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All that remains for us to compute is the Weyl tensor. Any exposure to conformal
geometry immediately tells us that the Weyl tensor vanishes. That is, that

Rabcd =
1

(D − 2)

(
gacRdb + gdbRac − gadRbc − gbcRad

)
− 1

(D − 1)(D − 2)
R

(
gacgdb − gadgbc

)
. (2.8)

We will try as hard as possible to avoid actually computing the right hand side by
expanding our expressions above. To show that the Weyl tensor vanishes, we must
build Rabcd out of Rbc, R and the metric gab. This statement alone essentially gives
us the expression at first glance.

The first important thing to notice is that Rabcd has no term proportional to ηmn∂m∂nΩ
while both Rab and R do. This means that if Rabcd can only be composed of linear
combinations of Rab and R which do not contain ηmn∂m∂nΩ. Looking at expressions
(2.4) and (2.6), we see that they can only appear in the combination

Rbd +
e2Ωηbd

2(1−D)
R = Rbd +

gbd

2(1−D)
R. (2.9)

Any multiple of this combination will automatically have no ηmn∂m∂nΩ contribution.
Staring a bit more at equations (2.4) and (2.6), we notice that the first set of terms in

(2.4) are all of the form gacRbd. Indeed, we see that
1

2−D

{
ηadRbc−ηacRbd+ηbcRad−ηbdRac

}
=

{
ηadδ

m
b δn

c−ηacδ
m
b δn

d +ηbcδ
m
a δn

d−ηbdδ
m
a δn

c

}(
∂m∂nΩ−(∂mΩ)(∂nΩ)

)
+. . . .

(2.10)
Notice that multiplying both sides of the above equation by e2Ω will convert all of
the ηab’s into gab’s3 . This is all we need to construct the Riemann tensor from the
Ricci tensor and scalar curvature: knowing the combination of Ricci tensors which
gives part of the Riemann tensor, we can use (2.9) to determine the rest. Indeed, we
see that

Cabcd + Rabcd =
1

2−D

{
gabRbc − gadRbd + gbcRad − gbdRac

}
+

R

2(1−D)(2−D)

(
gadgbc − gacgbd + gbcgad − gbdgac

)
,

=
1

D − 2

{
gacRbd − gadRbc − gbcRad + gbdRac

}
− R

(D − 1)(D − 2)

(
gacgbd − gadgbc

)
,

=
{

gadδ
m
b δn

c − gacδ
m
b δn

d + gbcδ
m
a δn

d − gbdδ
m
a δn

c

}(
∂m∂nΩ− (∂mΩ)(∂nΩ)

)
+

(
gadgbc − gacgbd

)
gmn(∂mΩ)(∂nΩ),

=Rabcd;

∴ Cabcd = 0. (2.11)
‘óπερ ’έδει πoι�ησαι

3The conversion from ηab → gab is completely natural. The only possibly non-trivial step comes from the last term
in the expression (2.4) for the Riemann tensor: bringing e2Ω to the right hand side of (2.4), we have a term which has
two lowered ηab’s and one upper ηab; now, e2Ωηmn = e4Ωgmn and how these two factors of e2Ω can be absorbed into the
lowered η’s as desired.
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Problem 3
We are to show that if ϕ(x) satisfies the flat-space, massless Klein-Gordon equation, then if gab =

e2Ω(x)ηab, the transformed field eβΩ(x)ϕ(x) ≡ ϕ′(x) satisfies the equation

gabϕ′;ab − αRϕ′ = 0, (3.1)

for appropriate values of α and β—dependant on the spacetime dimension but independent of Ω(x).

Let us agree to call ¤ ≡ ηab∂a∂b. Then the flat-space Klein-Gordon equation is sim-
ply ¤ϕ(x) = 0. Recall the expression for the scalar curvature R in D spacetime
dimensions for a metric which is conformally-related to the Minkowski metric (2.7):

R = 2(1−D)e−2Ω¤Ω− (2−D)(1−D)e−2Ωηmn(∂mΩ)(∂nΩ). (3.2)

We would like to explicitly state gab∇b∇a in terms of ¤ and Ω. This can be done quite
explicitly, recalling the Christoffel symbols for a conformally-flat spacetime(2.2),

gab∇b∇a = gab∂a∂b − gabΓc
ab∂c,

= e−2Ω
{

¤− ηab
(
δc
a(∂bΩ)∂c + δc

b(∂aΩ)∂c − ηabη
cm(∂mΩ)∂c

)}
,

= e−2Ω
{

¤− ηcb(∂bnΩ)∂c − ηac(∂aΩ)∂c + Dηcm(∂mΩ)∂c

}
,

= e−2Ω
{

¤− (D − 2)ηab(∂aΩ)∂b

}
.

Acting with gab∇b∇a on ϕ′ we find,

gab∇b∇aϕ′ = e−2Ω
{

¤
(
eβΩϕ

)
+ (D − 2)ηab(∂aΩ)

(
∂b

(
eβΩϕ

)) }
,

= e−2Ω
{

βϕ′¤(Ω) + β(β + D − 2)ϕ′ηab(∂aΩ)(∂bΩ) + 2βeβΩηab(∂aϕ)(∂bΩ) + (D − 2)eβΩηab(∂aϕ)(∂bΩ)
}

.

Although only one equation, if (3.1) is to hold for arbitrary Ω(x), there are actually
three constraints implied by (3.1)—one for each functionally distinct contribution.
Actually, we’ll find that there are only two independent conditions—just enough to
uniquely determine α and β.

First, notice that R does not contain any derivatives of ϕ(x). Therefore equation (3.1)
implies that

2βeβΩηab(∂aϕ)(∂bΩ) + (D − 2)eβΩηab(∂aϕ)(∂bΩ) = 0, (3.3)

arising from the gab∇b∇aϕ′ term in (3.1). This obviously implies that

∴ β = −D − 2
2

. (3.4)

The next condition(s) come form matching the remaining two functionally distinct terms
in (3.1), namely4

gab∇b∇aϕ′−αRϕ′ ∝ β¤Ω+β(β+D−2)ηab(∂aΩ)(∂bΩ)−2α(1−D)¤Ω+α(D−2)(D−1)ηab(∂aΩ)(∂bΩ).
(3.5)

Matching the corresponding terms, we see that

α =
β

2(1−D)
and α =

−β(β + D − 2)
(D − 2)(D − 1)

. (3.6)

We see that β = 1
2 (D−2) is consistent with both of these—more concretely, any two

of these three constraints is sufficient to imply the third. Therefore, we have shown
that ϕ′ = eβΩϕ will satisfy the modified Klein-Gordon equation (3.1) for any Ω(x) if

∴ β =
2−D

2
and α =

1
4

D − 2
D − 1

. (3.7)

‘óπερ ’έδει πoι�ησαι

4We are not including those pieces eliminated by the choice (3.4).




